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ABSTRACT 

Existing capacity manuals for signalized intersections admit rather considerable standard 
errors of saturation flow prediction reaching 8–10%. Errors in saturation flow predictions 
carry over to delay estimates and, consequently, they may lead to erroneous LOS 
estimates. There are three primary sources of errors in saturation flow predictions related 
to saturation flow models. First, temporal variance in a saturation flow causes a 
measurement error. This error increases uncertainty of saturation flow predictions since 
the measured values are used to develop predictive formulae of saturation flow. Second, 
omission of some capacity factors in predictive models increases the site-to-site variance 
of saturation flows not explained by the models. Third, an inadequate functional 
relationship between model variables and saturation flow rates adds a prediction bias. The 
discussion of these error components and pertaining countermeasures is presented.  

1. INTRODUCTION 

The assumption of fixed saturation flow s over a saturated green time is a convenient 
approximation (Figure 1), which makes capacity c of lane groups equal to saturation flow 
s times green ratio (g/C). The effective green signal is calculated as the displayed green 
plus the change period minus the lost time. Existing capacity prediction procedures focus 
on predicting the saturation flow rates that has been proven to depend on a considerable 
number of geometry and traffic characteristics. The factors of the lost time have not been 
reported in literature yet.  
 
Predictive equations of saturation flow rates used in the existing capacity manuals 
(Akcelik 1981; Kimber et al. 1986; Teply 1984; TRB 1997) have been developed from 
field measurements. The authors of the British and Australian methods admit a rather high 
standard error of saturation flow predictions reaching 8–10%. It means that in 5% of 
cases, a committed error can approach or be over 300 veh/h/lane. The effect of this 
random error on LOS determination is investigated in this paper.  
 
There are several sources of prediction errors. Temporal variance of a saturation flow 
causes a measurement error. In addition, a measurement technique itself may introduce 
additional uncertainty. An inadequate functional relationship assumed between model 
variables and saturation flow rates adds an additional prediction bias. Lastly, capacity 
factors omitted in the model are responsible for the site-to-site variance of saturation flows 
not grasped by the predictive model. An additional source, being more of users con- 
cern than of researchers, is inaccuracy in the input data that carries over onto the 
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FIGURE 1 The rectangular model of saturation flow rate. 

saturation flow predictions. The issues of measuring and modeling capacity are discussed 
in the Sections 3–5 following Section 2. The final remarks are given in the last section 
(Section 6) of the presentation. 

2. MISCLASSIFICATION OF LOS 

In the United States, the performance of highways is evaluated from the perspective of 
travelers using level of service (LOS). The traffic conditions are evaluated in 15-minute 
intervals of the analyzed period based on the predicted average control delay. Saturation 
flow rate is one of the main factors of control delay at signalized intersections.  
 
As mentioned in the introductory part, a standard error of saturation flow prediction can be 
as high as 8–10%. Apparently, errors in saturation flow rates used to estimate vehicle 
delays carry over onto delay predictions and LOS predictions. There is no clear indication 
how frequently the LOS obtained from biased saturation flow rates can be incorrect.  
 
A Monte Carlo experiment was performed to investigate the frequency of incorrectly 
determined LOS as an effect of inaccurate saturation flow predictions. Lane groups at 
isolated and signalized intersections were considered. The predicted saturation flow was 
1,800 veh/h, the effective green was 50 seconds, and the signal cycle was 100 seconds. It 
was assumed that the actual saturation flow rates represented by the predicted value varied 
around the predicted value with a standard deviation of 180 veh/h. Unbiased prediction 
was assumed. The actual saturation flow rates where generated 1,000 times for each 
assumed traffic volume. The delays were calculated for the predicted and actual saturation 
flow rates. The determination of the actual and predicted LOS followed the calculations of 
the delays.  
 
Figure 2 summarizes the simulation results. The vertical lines mark the ranges of degrees 
of saturation with the same predicted level of service indicated on the top of the graph 
box. For example, LOS D was claimed for the considered lane group if the predicted 
degree of saturation was higher than 0.88 but lower than 1.00. Specifically, if the 
predicted degree of saturation was 0.95 then the LOS was claimed to be D. The sloped 
curves (cumulative normal distributions) indicate the frequencies of actual delays being 
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higher than the critical delay for a specific LOS. Each sloped curve corresponds with a 
particular LOS. For the example of predicted degree of saturation 0.95, the actual delay 
was higher than the critical delay for LOS C in 74% of cases, for LOS D in 32% of cases, 
and for LOS E in 11% of cases. This result means that if the predicted degree of saturation 
was 0.95 with claimed LOS D, the actual LOS was C in (100−74) = 26% of cases, E in 
(32 −11) = 21% of cases, and F in 11% of cases. Only in (74−32) = 42% of cases, LOS D 
was correctly determined. This situation was worse for LOS E, which was correctly 
claimed in 26% of cases.  
 
Saturation flow predictions with the standard error lower than 10% would be represented 
by the cumulative normal curves steeper than in Figure 2. The absence of errors in 
saturation flow predictions would correspond to vertical cumulative curves matching the 
LOS boundaries. This is the ideal case of no prediction errors in LOS. On the other hand, 
a larger error in saturation flow prediction or additional errors (incorrect traffic volumes or 
signal timings) would make the cumulative normal curves in Figure 2 flatter.  

FIGURE 2 Misclassification of LOS caused by errors in saturation flow rate. 

The simulation results prompt rather a discouraging conclusion about our limited ability to 
classify LOS correctly if the prediction error of saturation flows is considerable. It was 
shown that in most cases, the probability of correctly stating the LOS was lower than 50% 
and in the worst cases it was as low as 26%. 
 
There is a strong need to improve the predictive methods of saturation flow rates. The 
following sections discuss the sources of errors in saturation flow predictions. Field data 
collected several years ago on Polish highways are used for illustration. The conclusions 
are expected to be transferable to other countries.  

3. MEASUREMENT TECHNIQUES 

All the existing methods of measuring saturation flows assume that saturation flow rate is 
fixed during a saturated green signal. Three distinguished measurement methods have 
been proposed:  
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a) Headway method (Greenshields et al. 1947; TRB 1997) estimates the average time 

headway between the vehicles discharging from queue as they pass the stop-line. The 
first several vehicles are skipped to avoid the effect of vehicles' inertia in the initial 
seconds of green time. The saturation flow rate is calculated as reciprocal of the mean 
headway.  

 
b) Regression technique (Branston and Gipps 1981; Kimber et al. 1985; Stoke et al. 

1987) is used to develop an equation involving saturated green time, number of 
vehicles in various categories, and lost time. A regression analysis yields the 
saturation flow, the lost times, and the passenger car equivalents for vehicles other 
than passenger cars.  

 
c) TRL method (TRRL 1963), vehicles are counted in three saturated green intervals 

(Figure 1). The saturation flow is calculated as the number of vehicles in the middle 
interval divided by the length of this interval.  

 
All these methods are appropriate for actual saturation flow profiles that have the plateau 
shape (Figure 1). These methods are not practical for cases where the saturated flow 
profile is more complex as for lane groups with protected and permitted turning 
movements (Figure 3). Use of a single saturation flow rate to calculate delays introduces a 
bias to the estimate of deterministic delay d1. 
 
An optimization technique was proposed by Tracz and Tarko (1992) to fit theoretical 
profiles similar to the one presented in Figure 3. To improve the estimation of the 
deterministic delay d1, the optimization program minimizes the average square error 
between the observed and theoretical cumulative counts of vehicles departing from queue. 
The solution yields parameters si and Pi shown in Figure 3.  
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FIGURE 3 A saturation flow profile for a protected and permitted left-turn 
movement. 
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FIGURE 4 The average saturation flow profile for the 21 through lanes. 

The plateau shape is commonly assumed for unopposed streams. This assumption was 
tested using extensive observations of through traffic in 21 traffic lanes located in four 
largest towns in Poland (Warsaw, Krakow, Gdansk, Katowice). The times when vehicles 
from queue passed the stop-line were recorded using press-button manual recorders. These 
times related to the beginning of green time were used to develop an average saturation 
flow profile representing all the 21 lanes (Figure 4).  
 
Figure 4 shows the mean vehicle departure rates in one-second intervals obtained for the 
investigated lanes using observations for over 1,100 signal cycles. On average, a 
saturation flow rate builds up rapidly during the first 6 seconds of green signal. Then, in 
contradiction to the assumed plateau profile, it does not stabilize but grows further during 
the next 20 seconds. Typically, a saturation flow rate stabilizes around 25 seconds after 
the green signal onset. Although the periods with rapid and then gradual buildups of 
saturation flow were present in all the investigated lanes, the lengths of these periods 
varied somewhat across lanes.  
 
A non-plateau profile as shown in Figure 4 introduces to the saturation flow 
measurements an additional site-to-site variance if the counting period varies across sites. 
To demonstrate this effect, the saturation flow rates have been estimated for various 
counting periods using the TRL method. The departure rates during the counting period 
were averaged. The saturation flow values for counting periods varying between 8 and 40 
seconds are depicted in Figure 5. Since the first 6 seconds provide too short interval, they 
were excluded from the estimation. For comparison, the optimization-based method 
proposed by Tracz and Tarko has been applied too. The results are presented in Figure 5. 
The dashed line represents the TRL method while the solid line represents the 
optimization-based method. The results indicate a substantial variation of the saturation 
flow estimates with the length of counting period.  
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FIGURE 5 Variation of the saturation flow estimates with the length of 
counting period (green signal). 

If the saturation flow rates are estimated with counting periods that vary from site to site, 
then an additional variance appears in the sample. This effect increases the prediction 
uncertainty but it does not cause any systematic bias if the counting period is independent 
of other saturation flow factors. Unfortunately, this may not be the case. For example, it is 
plausible to expect that the counting periods for straight streams are longer than for 
turning streams. The difference in the saturation flows between the straight and the turning 
streams will be a combined effect of the turning maneuver and the counting period. 
Neglecting the latter effect may lead to an overestimation of the effect of turning 
maneuvers. 
 
There are two possible methods to avoid the prediction bias. First, the counting period 
could be included in the saturation flow measurement as an additional explanatory 
variable. Alternatively, the counting period can have the same length for all investigated 
traffic lanes. The first solution seems to be more practical since the field data would be 
used in a more efficient manner. The method of measuring saturation flow rate through 
measuring the departure times of queues as proposed by the Highway Capacity Manual 
introduces the same problem. The solution is the same — incorporate the effect of 
departure time to the estimation of the saturation flow rate.  

4. HEAVY VEHICLES EFFECT 

The saturation flow rate is lower if trucks and buses are present in the stream. Heavy 
vehicles may influence the saturation flow in two ways: (1) they use time headways longer 
than the time headways passenger cars use, and (2) they increase time headways of other 
vehicles.  
 
The effect of heavy vehicles is incorporated into saturation calculations using a passenger 
car equivalent factor E. The equivalent factor E is the number of passenger cars that 
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replace one heavy vehicle in queue without changing the expected time of queue 
discharge. The equivalent factor for heavy vehicles that includes only the first effect can 
be easily determined as hhv /hpc, where hhv and hpc are the average time headways of heavy 
vehicle and passenger cars, respectively. The average headways are between vehicles that 
discharge from queue. 
 
TABLE 1 Headway Ratios hhv /hpc 

 
Vehicle category 
 

 
Equivalent 
factor 

Site-to-site 
standard 
deviation 

Passenger cars and vans 1.0  0.0  
Single trucks and buses 1.6  0.1  
Trucks with trailers and 
articulated buses 

2.3  0.2  

All heavy vehicles 1.7  0.2  
 
The ratios of time headways of heavy vehicles and cars calculated from the data collected 
by the authors are presented in Table 1. These values represent the total effect of heavy 
vehicles only if the second effect of heavy vehicles does not occur. To test the hypothesis 
that trucks do not affect headway of other vehicles, it is sufficient to show that the average 
time headway for cars does not depend on heavy vehicle ratio u. The average time 
headways for cars (including vans) have been regressed against the heavy vehicle ratios 
observed in the investigated traffic lanes (Figure 6). The regression analysis has indicated 
a quite significant relationship between these two variables. It is clear that heavy vehicles 
affect time headways of cars. Consequently, the equivalents in Table 1 do not fully 
describe the effect of heavy vehicles. 
 
The definition of equivalent factor will be used to determine its correct value. According 
to this definition 
 
 n · hpc(u) + m · hhv(u) = n · hpc(u = 0) + E · m · hpc(u = 0) (1) 
 

h = 2.14 + 1.44 u
Pr(b=0) = 0.004
r = 0.53
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FIGURE 6 The effect of heavy vehicles on non-heavy vehicle time headways. 
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The left-hand side expresses the discharge time of a queue that is composed of n passenger 
cars and m heavy vehicles. The proportion of heavy vehicles is u = n/(n + m). The right-
hand side equation is the discharge time of the equivalent queue consisting of only 
passenger cars (u = 0). The function hpc(u) describes the relationship between the 
passenger car headway and the proportion of heavy vehicles in the queue. After dividing 
the both sides of the equation with (n + m) and taking expectations, the following is 
obtained: 
 
 (1 − u) · hpc(u) + u · hhv(u) = (1 − u) · hpc(u = 0) + E · u · hpc(u = 0) (2) 
 
where u is the expected proportion of heavy vehicles in queue.  
  
Using sample average values of u = 0.13, and hhv /hpc = 1.7 (Table 1), and relationship hpc(u) 
= 2.14 + 1.44 · u (Figure 6), the following is obtained: hpc(0.13) = 2.33 s, hhv(0.13) =  
1.7 · hpc(0.13) = 3.96 s, and hpc(u = 0) = 2.14 s. A new value of E = 2.4 is obtained by 
solving the above equation. The new equivalent factor is believed to include both the 
effects of heavy vehicles. Its value is considerably higher than 1.7 obtained when 
neglecting the relationship hpc(u). 
 
Another way of evaluating the equivalent factor E is including the u ratio among the 
explanatory variables of a regression formula for saturation flow. This approach will be 
demonstrated in the next sections.  

5. PREDICTIVE FORMULA 

Saturation flow rates are affected by two types of factors. The first type—interruption 
factor—is an event that interrupts a vehicles stream. The first type includes parking 
vehicles, stopped buses, opposing traffic for left turns, pedestrians for right turns. These 
effects are rather well understood, thus they can be simulated or derived analytically. The 
second type—car following factor—affects spacing between moving vehicles. The second 
type includes such characteristics as heavy vehicles, lane width, horizontal curvature, and 
approach grade type. These effects are determined by human behavior and cannot be 
easily simulated. A statistical analysis of field data is a viable option. Resulting statistical 
relationships can be embedded in simulation or analytical models. The second type of 
factors is discussed in this section.  
 
Predictive formulas for saturation flows have three distinctive forms:  
 
multiplicative (TRB 1997),  
 S = S0 · f1 · f2 · f3... (3) 
 
additive (Kimber et al. 1986),  

 S = S0 + ∆S1 + ∆S2 + ∆S3... (4) 
 
and combined (Akcelik 1981; Teply 1984), where fi and ∆Si are functions of explanatory 
variable i. 
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The main difference between the first two models is the assumption of higher-order 
interactions between explanatory variables. Since any fi can be presented as [1 + (1 − fi)], 
the multiplicative form can be transformed to the equivalent additive form with all the first 
and higher-order interaction variables 
 
 S = S0 + ∆S1 + ∆S2 + ∆S3... + ∆S12 + ∆S23 + ∆S13... + ∆S123... + (5) 
 
where, for example,  
 
∆S1 = S0 · (1 − f1), 
∆S12 = S0 · (1 − f1) · (1 − f2), 
∆S123 = S0 · (1 − f1) · (1 − f2) · (1 − f3). 

 
From this perspective, the additive form is more flexible since it may include only 
significant higher-order variables. Besides, all the components of the additive expression 
are calibrated separately while the multiplicative form enforces certain dependencies 
between the components as presented above. On the other hand, the multiplicative formula 
may be justified by the actual interaction between factors, thus it may correctly imbed all 
the higher-order components of the additive form with a reduced number of parameters. 
Let us check the statistical fitness of the two types of models using the field data collected 
by the authors on Polish urban streets. The collected sample includes 38 traffic lanes with 
through streams, 21 with left-turning streams, and 10 right-turning streams. The following 
characteristics were used in the analysis of saturation flow: 

• ratio of heavy vehicles, 
• lane width,  
• type of maneuver, 
• turning radius (infinite for straight lanes), 
• lane location on the approach (near curb, middle), 
• presence of light rail crossing, and 
• area type (commercial area, other). 

 
The multiple regression indicated that the following four factors were statistically 
significant (10% significance level): 

• ratio of heavy vehicles, u; 
• lane width, w (meters); 
• turning radius, r (meters); and 
• lane location on the approach (l = 1 for near-curb location, 0 for middle location). 

 
No higher-order variables were found significant. The correlation analysis did not show 
any strong dependence between the explanatory variables.  
 
The resulting additive model is  
 

 S = 1850 + 80 · (w – 3.5) − 3150/r − 1700 · u − 75 · l (6) 
 
The main drawback of this model is unrealistically low saturation flow for streams with 
high proportion of heavy vehicles (S = 150 veh/h for u = 1.0, w = 3.5, r = ∞, and l = 0).  
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This result is the effect of the linear relationship between S and u calibrated for the range 
of u between 0.0 and 0.30.  
 
The multiplicative model obtained for the same data is 
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The third considered model is a reciprocal model S = 3600/h, where h is the average time 
headway between vehicles departing from queue. The time headway was an additive 
function of the four significant variables. The obtained model is as follows: 
 

 
lurw

S
⋅+⋅++−⋅−

=
13.06.2/5)5.3(14.088.1

3600
 (8) 

 
The last model regards the fact that the saturation flow rate is the reciprocal of the time 
headway drivers prefer to maintain in response to traffic and geometry cues. The 
denominator can be easily used in such simulation models as CORSIM where, so-called, 
saturation time headway has to be provided by the user.  
 
It should be noticed that the passenger car equivalent for heavy vehicles calibrated for the 
multiplicative model is E = 2.3, a value close to 2.4 obtained in Section 4. The 
corresponding E in the reciprocal model can be obtained for ideal conditions (w = 3.5, r = 
∞, l = 0) by calculating the average headway for cars (1.88 s when u = 0) and for heavy 
vehicles (1.88 + 2.6 = 4.48 s when u = 1). The headway ratio is 4.48/1.88 = 2.38.  
 
The effectiveness of the models is evaluated using standard errors of prediction. Table 2 
summarizes the standard errors for the three models already described. Additional three 
models in Table 2 demonstrate the multiplicative model with improper representation of  
two factors: heavy vehicles and turning maneuvers. The first additional model uses 
underestimated passenger car equivalent for heavy vehicles E = 1.7. The second model 
includes the average impact of turns through variable t = 1 for turning streams and 0  
for through streams. No information about turning radii is used. This treatment yields a 
single-valued adjustment factor. The third model has both the improper E and the t 
variable instead of r.   
 
Surprisingly, the effectiveness of the multiplicative, additive, and reciprocal models are is 
practically the same. Nevertheless, the reciprocal and multiplicative models seem to be 
more appropriate than the additive model. On the other hand, improper incorporation of 
heavy vehicles increases the prediction error considerable. The negligence of the turning 
radius in favor of a single factor for turning maneuver has even a stronger negative effect.  
 
The model with combined deficiency has the prediction error increased from original  
90 veh/h to 124 veh/h. These prediction errors correspond to the relative prediction errors 
5.8% and 8.1%, respectively. 
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TABLE 2 Fitness of the Investigated Models 

Model Standard error of 
prediction (veh/h) 

Additive 93 

Multiplicative 90 

Reciprocal 90 

Multiplicative with E = 1.7  107 

Multiplicative with t instead of r  114 

Multiplicative with E = 1.7 and t instead of r 124 

6. FINAL REMARKS 

This presentation focuses on unopposed traffic streams and on saturation flow factors that 
can be classified as car-following variables. Various types of regression models have been 
investigated. In addition, effect of some deficiencies in the representation of selected 
impacts was analyzed.  
 
Prediction errors in saturation flow rates may cause difficulties in correct determination of 
LOS—the main objective in evaluating signalized intersections. An incorrect LOS may be 
different from the actual one even by three levels. If the standard error of prediction is 
10%, then the odds of correct determination of LOS D or E may be quite low. These 
results point out to the importance of correct estimation of the saturation flow rates. The 
reader should keep in mind that there are other sources of incorrect LOS such as 
inaccurate volumes or inaccurate signal timing.  
 
There are two general sources of errors in saturation flow prediction: measurement and 
modeling. The actual saturation flow intensity can differ from the plateau shape—widely 
accepted for unopposed traffic streams. Use of counting periods varying from one site to 
another may introduce additional variance and uncertainty to the saturation flow 
measurements and then predictions. A systematic bias is possible if the counting period is 
correlated with other variables significant for the saturation flow. A practical remedy is to 
incorporate a counting period (queue discharge time) to the saturation flow predictive 
formula. This additional factor can be represented in the prediction models through an 
effective green time. If in some applications, such model is not practical, the counting 
period can be removed from the model by applying a default value.  
 
The results of analysis have shown a substantial effect of heavy vehicles on time 
headways of passenger cars. An equivalent factor equal to a simple ratio of average time 
headways does not grasp the entire effect of heavy vehicles. Such a deficient equivalent 
factor considerably increases the prediction error of saturation flows. A simplified 
representation of turning movements also may lead to a considerable increase in the 
prediction error.  
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The effect of the model form was found non-consequential to the quality of saturation 
flow predictions. Nevertheless, the multiplicative and reciprocal forms are recommended. 
The additive model has slightly worse performance and may produce unrealistic results 
for inputs outside of the range covered by the field data use in the model calibration. 
 
The strong effect of inaccurate saturation flow rates on the ability to correctly determine 
the LOS has been found for unopposed streams. Since unopposed streams are usually 
primary streams in highway networks, this finding indicates an obvious need for frequent 
updates of predictive formulas for saturation flows and for a careful consideration of local 
conditions. Where possible, the saturation flow rates should be determined through direct 
field measurements. 
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